Kaiwei Tu

Email: ktu5@wisc.edu,Website: https://kaiweitu.github.io/

Education

University of Wisconsin - Madison	Madison, WI
Ph.D. candidate in Computer Science	Sept 2019 - Present
Advisor: Prof. Remzi H. Arpaci-Dusseau and Prof. Andrea C. Arpaci-Dusseau	
University of Michigan	Ann Arbor, MI
Bachelor of Science in Engineering major in Computer Science, Summa Cum Laude (highest distinction	n) April 2019
Shanghai Jiao Tong University	Shanghai, China
Bachelor of Science in Electrical and Computer Engineering	August 2017

Research Experience

The ADvanced Systems Laboratory (ADSL)

Research Assistant

- I am currently exploring the development of a modern memory tiering system.
- MOST is a novel tiering-based approach designed for modern heterogeneous storage hierarchy.
- Orthus is a research project published in FAST'21 that introduces a new caching mechanism called Non-Hierarchy Caching (NHC), designed to dynamically offload saturated caching devices when necessary. I implemented several state-of-the-art caching strategies within the kernel module of Intel's open-source caching framework, Open CAS Linux, to compare their performance against NHC. The results demonstrated that NHC outperforms existing approaches across a broad spectrum of workloads, especially in dynamic environments.
- NyxCache is a research project published in FAST'22 that introduces a flexible and efficient caching framework for multi-tenant caches using persistent memory (PM). One of my key contributions was developing the Nyx-controller, a crucial component that enforces various sharing policies within a multi-tenant caching environment. I also conducted experiments that demonstrated NyxCache's ability to effectively implement policies such as quality-of-service, proportional sharing, and fair slowdown—capabilities that traditional DRAM-based methods are unable to achieve.

Work Experience

Meta

Software Engineering Intern, host: Wei Su

- I worked with the AI & System Co-design Compute and Storage team to build a AI workload benchmark for CPU.
 Google Sunnyvale, CA
- Research Intern, host: Carlos Villavieja and Sree Kodakara.
- I worked with the Brog team, Google's large-scale cluster management system. I conducted a comprehensive evaluation of four memory bandwidth regulation mechanisms on AMD machines across the fleet. I proposed a hybrid policy that combines CPU jailing and resctrl, leading to improved memory bandwidth regulation efficiency at scale.

Citrix System

Software Development Engineering Intern

Enhanced a provisioning service to automatically deploy Citrix VMs on the cloud. Led the design and development of a new user interface for checking provisioning information by creating a corresponding RESTful API.

Publications

[1] **Kaiwei Tu**, Kan Wu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. Getting the MOST out of your Storage Hierarchy with Mirror-Optimized Storage Tiering. (FAST'26). To appear.

[2] Kan Wu, **Kaiwei Tu**, Yuvraj Patel, Rathijit Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching. In *Proceedings of the 20th USENIX Conference on File and Storage Technologies* (FAST '22), February 2022.

[3] Kan Wu, Zhihan Guo, Guanzhou Hu, **Kaiwei Tu**, Ramnatthan Alagappan, Rathijit Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. The Storage Hierarchy is Not a Hierarchy: Optimizing Caching on Modern Storage Devices with Orthus. In *Proceedings of the 19th USENIX Conference on File and Storage Technologies* (FAST '21), Virtual, February 2021.

Awards & Grants

- USENIX Student Grant: FAST'22.
- James B. Angell Scholar (2019 Spring); EECS Scholars (2018 Fall).
- Dean's List: 2017 Fall, 2018 Spring, 2018 Fall, 2019 Spring; University Honors: 2017 Fall, 2018 Spring, 2018 Fall.

Ann Arbor, MI April 2021 - present

Fort Lauderdale, FL April 2018 – August 2018

May 2022 - Aug 2022

Menlo Park, CA May 2025 - Current