Kaiwei Tu

Email: tukaiwei@outlook.com, Github: https://github.com/Kaiweitu

Education

University of Wisconsin - Madison	Madison, WI
Ph.D. candidate in Computer Science	Sept 2019 - Present
Advisor: Prof. Remzi H. Arpaci-Dusseau and Prof. Andrea C. Arpaci-Dusseau	
University of Michigan	Ann Arbor, MI
Bachelor of Science in Engineering major in Computer Science, Summa Cum Laude (highest distincti	ion) April 2019
Shanghai Jiao Tong University	Shanghai, China
Bachelor of Science in Electrical and Computer Engineering	August 2017

Research Experience

The ADvanced Systems Laboratory (ADSL)

- Research Assistant
- April 2021 present My current research focus is redesigning existing software technology over emerging storage devices. My ongoing project is rethinking caching over a modern storage hierarchy composed of new storage devices such as persistent memory.
- Orthus is a research project published on FAST'21 which proposes a new caching mechanism named Non-Hierarchy Caching that can dynamically offload the saturated caching device if necessary. Specifically, I implement serval stateof-art caching strategies in Intel's open-source caching framework, Open CAS Linux, to compare against NHC, which shows that NHC outperforms previous approaches in a broader range of workloads, especially dynamic workloads.
- NyxCache is a research project published on FAST'22 that proposes a flexible and efficient caching framework for multi-tenancy cache over PM. One of my primary contributions is implementing the Nyx-controller, a significant component of enforcing different sharing policies upon a multi-tenant cache. In addition, I conducted experiments to show that NyxCache could correctly enforce policy such as quality-of-service, proportional sharing, and fair slowdown while the traditional DRAM-based method couldn't.

Work Experience

Google

Research Intern

The project I am working on is about evaluating and designing node-level memory bandwidth QoS mechanism on AMD machines in the cluster. Specifically, I systematically evaluate and compare four memory bandwidth regulation mechanisms and purpose a hybrid policy that combing cpu jailing and resctrl that could achieve efficient memory bandwidth regulation at scale.

University of Wisconsin - Madison

Introduction to OS, Teaching Assistant

- Created hand-on xv6-based kernel projects relating to virtual memory and file system checkers.
- Led weekly lab section and office hours for lecture content and project-related questions.

Citrix System

Software Development Engineering Intern

- Enhanced a provisioning service that can automatically deploy Citrix VM on the cloud.
- Led, designed and developed a new interface for users to check provisioning information by creating corresponding RESTful API, utilizing BootStrap as the front-end frame and Spring Boot and MySQL as the back-end.

Publications

[1] Kan Wu, Kaiwei Tu, Yuvraj Patel, Rathijit Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. NyxCache: Flexible and Efficient Multi-tenant Persistent Memory Caching. In Proceedings of the 20th USENIX Conference on File and Storage Technologies (FAST '22), February 2022.

[2] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagappan, Rathijit Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. The Storage Hierarchy is Not a Hierarchy: Optimizing Caching on Modern Storage Devices with Orthus. In Proceedings of the 19th USENIX Conference on File and Storage Technologies (FAST '21), Virtual, February 2021.

Awards & Grants

- USENIX Student Grant: FAST'22
- James B. Angell Scholar: achieve an "A" record for two or more consecutive terms
- Dean's List: 2017 Fall, 2018 Spring, 2018 Fall, 2019 Spring

Sunnyvale, CA May 2022 - Aug 2022

Madison, WI

Jan 2020 - April 2020, Jan 2021 - April 2021

Fort Lauderdale, FL

April 2018 – August 2018

Ann Arbor, MI